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ABSTRACT

In this work, we synthesized mixed-phase hexagonal-boron nitride (h-BN)/cubic-BN (c-BN) composites with varying ratios and investigated
their frequency and temperature-dependent dielectric properties. As the ratio of c-BN increased, we observed a corresponding increase in the
dielectric constant of the composites. Furthermore, we used spark-plasma sintering (SPS) to treat the mixed-phase composite, which resulted
in a phase transformation from mixed phase to pure h-BN phase. Remarkably, the composite exhibited an increase in dielectric constant after
the SPS process, which can be attributed to the densification of the composite and the enhancement in grain size. Our approach presents a
promising strategy for effectively modulating the dielectric properties of BN, which is crucial for advanced electronics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0210915

With the rapid development of modern electronic technology,
there is an increasing demand for novel dielectric materials with
multifunctional properties, including high dielectric constant, low
dielectric loss, strong mechanical robustness, and excellent thermal
conductivity.1–7 The importance of high dielectric constant materi-
als in electronics lies in their ability to enhance device perfor-
mance, enable miniaturization, improve energy efficiency, and
facilitate the development of advanced electronic systems and tech-
nologies. Ultrawide-bandgap (UWBG) material boron nitride
(BN), one of the most fascinating materials, has the potential to
meet these needs due to its unique structural, mechanical, electri-
cal, optical, thermal, and chemical properties.8–12

Several polymorphs of BN exist, including 2D hexagonal BN
(h-BN), 3D cubic BN (c-BN), wurtzite BN (w-BN), and rhombohedral
BN (r-BN) phases. Among these polymorphs, 2D h-BN and 3D c-BN
are the two most valuable and applicable phases, which have been
widely investigated.12 h-BN is a layered structural material with vari-
ous attractive properties, including a UWBG of �6 eV, a high break-
down electric field of �10MV/cm, a dielectric constant of �3.76, and
a high thermal conductivity of �550W/(m�K).10,13–15 However, the
relatively low dielectric constant of h-BN limits its application as a
dielectric material in modern electronics and energy storage devices.

Hence, it is crucial to present a feasible solution to enhance the dielec-
tric performance of h-BN.

On the other hand, c-BN exhibits excellent dielectric, thermal,
and mechanical performance.16–20 Benefiting from its ultrawide
bandgap of �6.4 eV, a higher dielectric constant of �8, a high thermal
conductivity of �1300W/(m�K), and strong mechanical robustness,
c-BN could be used to modulate the dielectric properties of h-BN by
making h-BN/c-BN nanocomposites. The combination of h-BN and
c-BN could lead to synergistic effects, where the properties of the com-
posite are superior to the individual components.21–23

In this paper, we synthesized h-BN/c-BN composites with differ-
ent ratios and investigated their frequency and temperature-dependent
dielectric properties, showing systematic variation in dielectric behav-
iors. Furthermore, we treated a h-BN/c-BN mixed-phase composite
with spark-plasma sintering (SPS), transforming it into a pure h-BN
composite. Remarkably, after the SPS treatment, the composite showed
an increased dielectric constant compared to the dielectric constant of
the pure h-BN composite. These observations are vital for the design
and engineering of BN as a dielectric material for various applications.

We first prepared h-BN/c-BN composites and performed com-
prehensive structural characterizations. For synthesis, as-purchased
h-BN and c-BN powders (from MSE suppliers, USA) were grounded
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in an agate mortar and pestled for �30min by adding a few drops of
polyvinyl alcohol (PVA) binder. The powders were then pressed with
4 ton load to form a compact 1-in. diameter pellet. The as-made pellet
was then sealed inside a quartz tube (in vacuum) and sintered at
1000 �C for 12 h. The ramping up and down rate of the temperature
was �100 �C/h. We prepared three h-BN/c-BN composites with dif-
ferent ratios, including h-BN (100% molar ratio)/c-BN (0% molar
ratio) [h-BN (100)/c-BN (0)] composite, h-BN (75% molar ratio)/
c-BN (25% molar ratio) [h-BN (75)/c-BN (25)] composite, and h-BN
(50% molar ratio)/c-BN (50% molar ratio) [h-BN (50)/c-BN (50)]
composite. The area and the thickness of all three composites are
�5.07 cm2 and�4.9mm, respectively.

For the h-BN (75)/c-BN (25) composite, we performed x-ray dif-
fraction (XRD) by using the Rigaku SmartLab x-ray diffractometer
(Tokyo, Japan) with a monochromatic Cu Ka radiation source
(k¼ 1.5406 Å). XRD pattern showed the presence of two strongest
(002) peak and (111) peak (along with other Bragg peaks) that corre-
sponded to the most stable planes of h-BN and c-BN, respectively, as
shown in Fig. 1(a). Raman spectroscopy was carried out by using
Renishaw via confocal microscope with a 532 nm laser as the excitation
source. As shown in Fig. 1(b), the Raman spectroscopy showed a peak
at �1366 cm�1 that corresponded to the E2g phonon mode of h-BN,
while another hump at �1054 cm�1 corresponded to the longitudinal
optical (LO) vibrational mode of c-BN.24,25 The origin of the strong
fluorescence background observed in the Raman spectra could be due
to the large background contributed by the c-BN phase.26 Figure 1(c)
shows the Fourier transform infrared spectroscopy (FTIR) obtained by
using a Nicolet 380 FTIR spectrometer with a single-crystal diamond
window, which clearly showed the presence of both h-BN and c-BN

peaks.27,28 Figure 1(d) shows the morphology of the composites, which
was examined by using a field emission scanning electron microscope
(FESEM) (FEI Quanta 400 ESEM FEG system). For FESEM, we sput-
tered �10 nm gold on the surface to avoid the charging effect. FESEM
clearly showed the sheet-like structure for h-BN with a grain size of
�1–2lm and particle-like structure for c-BN with a grain size of less
than 1lm.

To investigate the dielectric properties, we performed frequency-
dependent and temperature-dependent dielectric measurements on
the composites. Silver paste was coated on both sides of the composites
to serve as electrodes. The frequency-dependent and temperature-
dependent capacitance measurements were performed using Keysight
B1500A semiconductor device parameter analyzer from 5 to 800 kHz
at room temperature. e0, the real part of the complex dielectric constant
of the composites, can be extracted using the formula:29

e0 ¼ C � d
e0 � A ;

where C is the capacitance, d is the thickness of the composites, e0 is
the permittivity of free space, and A is the surface area of the compo-
sites. The loss tangent tand can be calculated by29

tan d ¼ e00

e0
;

e00 ¼ G � d
2pf � A ;

where e00 is the imaginary part of the complex dielectric constant, G is
the conductance, and f is the frequency.

FIG. 1. Structural characterization of h-BN
(75)/c-BN (25) composite. (a) XRD pat-
tern, (b) Raman spectroscopy, (c) FTIR
spectroscopy, and (d) FESEM image
showing the formation of the mixed-phase
composite.
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For all three BN composites, the e0 has a clear decreasing trend
with increasing frequencies, which is commonly observed for other
dielectric materials, as shown in Fig. 2(a).30,31 The trend can be
explained by the incapability of dipoles to follow the change of the
electric field at high frequencies. The e0 of h-BN (100)/c-BN (0) com-
posite was calculated to be�3.45 at 800kHz and increased to�4.11 at
5 kHz. The dielectric constant of the composites at a fixed frequency
showed an increase with increasing c-BN ratio (e.g., the dielectric con-
stant of h-BN (100)/c-BN (0) composite, h-BN (75)/c-BN (25) com-
posite, and h-BN (50)/c-BN (50) composite at 5 kHz was �4.11,
�4.59, and�5.13, respectively), owing to the higher dielectric constant
of c-BN and the increased interfacial polarization. Furthermore, for
our composites, we did not see any trace of amorphous-BN (a-BN)
phase,26 and it has been reported that a-BN showed an ultra-low
dielectric constant of�1.30 at 800kHz,32 whereas our crystalline phase
composites showed much higher dielectric constant values. Therefore,
the existence of a-BN in our composites can be excluded. From
Fig. 2(b), we could observe that all three composites had low tan d
below 0.12, while tan d increased with an increasing c-BN ratio at a
fixed frequency. The increase in tan d with an increasing c-BN ratio
could be attributed to the increased interfacial polarization as h-BN
and c-BN have different polarity and conductivity.33

We also investigated the temperature-dependent dielectric behav-
iors of the composites, as shown in Figs. 2(c) and 2(d). The dielectric
properties of the three composites were measured at 100 kHz from 25
to 150 �C. e0 of all three composites increased with increasing tempera-
tures, which can be attributed to enhanced interfacial polarization at
higher temperatures.34,35 tan d of the h-BN (100)/c-BN (0) composite
had negligible dependence on temperature, while tand of the h-BN
(75)/c-BN (25) and the h-BN (50)/c-BN (50) composites showed a
clear decreasing trend with increasing temperature. This might be
attributed to the fact that the tan d of the mixed-phase composites is

dominated by interfacial polarization, and the decreasing trend at
higher temperatures is due to the space charge response, which is also
observed in other materials.36

Furthermore, we used SPS to treat the h-BN (50)/c-BN (50) com-
posite at 1700 �C and 90MPa, for 1 h. The HTHP self-densification
SPS process was conducted utilizing an SPS 25–10 machine from
Thermal Technology LLC, California, USA, at a consistent uniaxial
pressing pressure of 90MPa and a heating rate of 50 �C/min, per-
formed at the SPS facility in Texas A&M University, USA. The sinter-
ing temperature was maintained at 1700 �C. The sintering process
followed this protocol: a mixture of h-BN and c-BN powders was
placed into a graphite mold with a diameter of 1 in. and was then
introduced into the sintering chamber under an initial pressure of
5MPa. The chamber was held at �2� 10�5Torr for �30min before
sintering for 1 h under atmospheric pressure and within an ultra-high
purity 5N (�99.999%) Argon gas environment. The temperature
during the SPS was monitored by using an optical pyrometer
from Raytek, Berlin, Germany (model D-13127). Following the SPS
process, the chamber pressure was gradually released at a rate of
approximately 5MPa/min, while the temperature was reduced at a
rate of�100 �C/min.

After the SPS process, we found that the original h-BN (50)/c-BN
(50) composite was fully transformed into a pure h-BN composite (we
then referred to it as the SPS h-BN composite). The area and thickness
of the SPS h-BN composite are �5.07 cm2 and �3.8mm, respectively.
The details of the c-BN to h-BN phase transformation using SPS have
been shown in our recent studies.26,37 Figure 3 shows the structural
characterizations of the composite before and after the SPS process.
Figures 3(a) and 3(e) show the XRD results of the composites. Before
the SPS process, all the XRD peaks corresponding to h-BN and c-BN
could be observed. In contrast, after the SPS process, only peaks corre-
sponding to h-BN could be observed. Figures 3(b) and 3(f) show the

FIG. 2. (a) and (b) Frequency-dependence,
and (c) and (d) temperature-dependence of
dielectric constant and dielectric loss for the
three BN composites.
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Raman spectroscopy of the composites. Before the SPS process, a
broad peak containing both h-BN and c-BN peaks could be
observed. On the contrary, a sharp peak corresponding to h-BN
could be observed after the SPS process. Figures 3(c) and 3(g)
display the FTIR spectroscopy of the composites. Similarly, both
h-BN and c-BN peaks could be observed before the SPS process,

while only h-BN peaks could be observed after the SPS process.
From FESEM, we could find both h-BN and c-BN grains before the
SPS process, whereas only large h-BN sheets could be observed
after the SPS process. Moreover, the density of the SPS h-BN com-
posite increased from �1.35 g/cm3 for the h-BN (100)/c-BN (0)
composite to �2.0 g/cm3. These results confirmed the phase

FIG. 3. Structural characterization com-
parison of the h-BN (50)/c-BN (50) com-
posite and the SPS h-BN composite. (a)
and (e) XRD patterns, (b) and (f) Raman
spectroscopy, (c) and (g) FTIR spectros-
copy, and (d) and (h) FESEM images.
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transformation from the mixed phase to the pure and high-quality
h-BN phase by the SPS process.

We then measured the frequency-dependent and temperature-
dependent dielectric behaviors of the SPS h-BN composite.
Surprisingly, compared to the e0 at 5 kHz (4.11) of the h-BN (100)/
c-BN (0) pellet, the e0 at 5 kHz of the SPS h-BN composite increased to
5.59, as shown in Fig. 4(a). The increase in e0 could be attributed to the
densification of the composite and the improved grain orientation.
The densification of the composite and improved orientation could
increase the overall polarization and result in a higher dielectric con-
stant. The detailed structural characterization comparison of the h-BN
(100)/c-BN (0) composite and the SPS h-BN composite is included in
the supplementary material. The tan d of the SPS h-BN composite was
also higher than the tand of the h-BN (100)/c-BN (0) composite, pos-
sibly due to the increased conduction loss, as shown in Fig. 4(b).38,39

From Figs. 4(c) and 4(d), we could observe that e0 and tan d of the SPS
h-BN composite both show an increasing trend with increasing tem-
perature, as conductivity and the related conduction loss would
increase at higher temperatures.

In summary, we prepared h-BN/c-BN composites with different
ratios using solid-state synthesis and performed frequency and
temperature-dependent dielectric measurements. The dielectric con-
stant of the composites was found to be increased with an increasing
c-BN ratio. Furthermore, we treated the h-BN (50)/c-BN (50) compos-
ite with SPS, transforming the composite into a pure h-BN composite.
The dielectric constant of the SPS h-BN composite showed a higher
value than that of the h-BN (100)/c-BN (0) composite, attributed to
the densification of the composite, the increase in grain size, and the
improved grain orientation. Our work could serve as a guideline to
design and engineer dielectric materials based on polymorphs of BN
materials.

See the supplementary material for the frequency-dependence of
capacitance and conductance for the four BN composites in Fig. S1
and for the structural characterization comparison of the h-BN (100)/
c-BN (0) composite and the SPS h-BN composite in Fig. S2.
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